Extending Baire property by uncountably many sets

نویسندگان

  • Pawel Kawa
  • Janusz Pawlikowski
چکیده

We prove that if ZFC is consistent so is ZFC + “for any sequence (An) of subsets of a Polish space 〈X, τ〉 there exists a separable metrizable topology τ ′ on X with B(X, τ) ⊆ B(X, τ ′), MGR(X, τ ′) ∩ B(X, τ) = MGR(X, τ) ∩B(X, τ) and An Borel in τ ′ for all n.” This is a category analogue of a theorem of Carlson on the possibility of extending Lebesgue measure to any countable collection of sets. A uniform argument is presented, which gives a new proof of the latter as well. Some consequences of these extension properties are also studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Baire Theory of Category

The Baire theory of category, which classifies sets into two distinct categories, is an important topic in the study of metric spaces. Many results in topology arise from category theory; in particular, the Baire categories are related to a topological property. Because the Baire Category Theorem involves nowhere dense sets in a complete metric space, this paper first develops the concepts of n...

متن کامل

On a Fragment of the Universal Baire Property for Σ2 Sets

There is a well-known global equivalence between Σ2 sets having the Universal Baire property, two-step Σ3 generic absoluteness, and the closure of the universe under the sharp operation. In this note, we determine the exact consistency strength of Σ2 sets being (2 )-cc Universally Baire, which is below 0. In a model obtained, there is a Σ2 set which is weakly ω2-Universally Baire but not ω2-Uni...

متن کامل

Solutions to Congruences Using Sets with the Property of Baire

Hausdorff’s paradoxical decomposition of a sphere with countably many points removed (the main precursor of the Banach-Tarski paradox) actually produced a partition of this set into three pieces A, B, C such that A is congruent to B (i.e., there is an isometry of the set which sends A to B), B is congruent to C, and A is congruent to B ∪ C. While refining the Banach-Tarski paradox, R. Robinson ...

متن کامل

Banach-tarski Decompositions Using Sets with the Property of Baire

Perhaps the most strikingly counterintuitive theorem in mathematics is the "Banach-Tarski paradox": A ball in R3 can be decomposed into finitely many pieces which can be rearranged by rigid motions and reassembled to form two balls of the same size as the original. The Axiom of Choice is used to construct the decomposition; the "paradox" is resolved by noting that the pieces cannot be Lebesgue ...

متن کامل

On Uncountable Unions and Intersections of Measurable Sets

We consider several natural situations where the union or intersection of an uncountable family of measurable (in various senses) sets with a “good” additional structure is again measurable or may fail to be measurable. We primarily deal with Lebesgue measurable sets and sets with the Baire property. In particular, uncountable unions of sets homeomorphic to a closed Euclidean simplex are consid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2010